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Abstract

In this paper we build Lagrangian continuum traffic flow models that are able to utilize trajectory information transmit-
ted between connected vehicles via vehicle-to-everything (V2X) connectivity. These models capture three important
features of traffic flow: (i) the propagation of congestions in time, (ii) the propagation of congestions in space, (iii)
the string instability (or stability) of traffic that is related to the amplification (or decay) of traffic waves. The pro-
posed models have only three tunable parameters to capture these three features. One of these parameters is the time
delay that models the actuator lag in vehicle dynamics, the reaction time of human drivers, and the communication
and feedback delays of connected and automated vehicles. The proposed Lagrangian continuum traffic models with
delays establish a framework for traffic prediction and control. On one hand, connected vehicles may use predictions
about the future motion of neighboring vehicles or their own. On the other hand, the continuum nature of these models
allows one to study the large-scale impact of connected vehicles on the traffic flow. This opens the path for Lagrangian
(vehicle-based) traffic control that supplements existing Eulerian (location-based) traffic control techniques.

Keywords: connected automated vehicles, V2X connectivity, traffic dynamics, traffic flow models, time delay,
Lagrangian frame

1. Introduction

Today transportation is undergoing a fast development due to emerging technologies in vehicle-to-everything
(V2X) connectivity, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, or connec-
tivity with cyclists, pedestrians and other traffic participants. V2X connectivity is able to provide connected vehicles
(CVs) valuable information about surrounding traffic that is not directly perceivable by on-board sensors [1]. Con-
nectivity does not necessarily require automated control, it can serve both connected automated vehicles (CAVs) and
connected human-driven vehicles (CHVs) [2]. In this paper, we focus on applications of connectivity for passenger
vehicles on highways via V2V and V2I communication.

In V2X communication the most common messages include the position and speed of connected vehicles, that
are called Lagrangian data. In general, traffic data may characterize certain road locations or describe the motion of
individual vehicles; we refer to the location-based information as Eulerian and to the vehicle-based one as Lagrangian.
Previously, traffic measurements could rely on Eulerian data by counting vehicles at a certain road location via loop
detectors or cameras [3, 4, 5]. After the occurrence of GPS-capable devices such as smartphones, however, Lagrangian
data became also widely available [6, 7]. Routing apps (e.g. Waze, Google Maps, Here Maps and TomTom) provide
awareness about surrounding traffic by aggregating Lagrangian data from their users to produce Eulerian (location-
based) traffic forecasts. While data aggregation typically causes a few minutes delay in the forecasts, V2X connectivity
provides another way to obtain information directly, in real time and in a standardized manner.

These applications show that leveraging Lagrangian data is getting more and more relevant in transportation. Traf-
fic models, which can also be categorized into Eulerian and Lagrangian ones [8], are essential tools to leverage data.
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Initially, Eulerian traffic models have been more popular [9, 10]. Although they are more suited for handling Eule-
rian data, Eulerian models may also utilize Lagrangian data, for example via ensemble Kalman filtering [11, 12, 13],
Newtonian relaxation [14] or integration of traffic flow models with car following models [15]. Yet, it is more natural
to use Lagrangian data by Lagrangian models, which have proven to be efficient in traffic estimation using floating
car data [16, 17]. Lagrangian models are also more suited for describing heterogeneous traffic including different
vehicles (cars or trucks, human-driven or automated, connected or non-connected vehicles), because heterogeneity is
induced by vehicle diversity rather than location-dependency [18].

For the reasons above, this paper aims to construct Lagrangian traffic models that directly handle the Lagrangian
data obtained from connectivity. This can be achieved by car following models or continuum traffic flow models [3],
where the former ones are typically used for a few vehicles and short time scales, while the latter facilitate the study
of large-scale traffic patterns. This paper is dedicated to the larger scales and the continuum models. While continua
give a more aggregate description of the traffic flow, they also make the eventual conversion of models and results
to Eulerian frame easier, and they facilitate extension to multi-lane or multi-class traffic [18, 19]. Here we construct
Lagrangian continuum models, which are able to capture the main characteristics of traffic flow while having a small
number of parameters. In particular, we capture the propagation of traffic congestions in time and space, as well
as their amplification or decay. One key ingredient of these models is the time delay, which may represent vehicle
dynamics (i.e., the time a vehicle needs to reach a prescribed velocity or acceleration), the reaction time of human
drivers, the feedback delays in automated vehicles, or the communication delays in connected vehicles; see [3] for
more details on the role of delays in traffic. The introduction of delays into continuum models is nontrivial, there are
only a few recent attempts in the literature [20, 21, 22, 23, 24]. Since the delays correspond to a certain vehicle, they
are of Lagrangian nature. Therefore, it is natural to include them in Lagrangian models, while, as will be shown, it is
more complicated to take them into account by Eulerian models. The novelty of our work from modeling perspective
is the introduction of time delays into Lagrangian continuum models and providing their Eulerian equivalent.

As an application of Lagrangian models, we make predictions about the future motion of connected vehicles
in congested traffic based on the information they receive through V2X connectivity. Such on-board Lagrangian
predictions can be tailored to the needs of the CVs and allow them to avoid undesired future states in traffic. This
supplements existing Eulerian prediction techniques [25, 26, 27] that are efficient in anticipating traffic at specific
locations but are less suited to trajectory prediction or to handling mixed traffic with delays. As a motivating example,
we remark that applications in CAVs use information about the future motion of the preceding vehicle to improve
energy efficiency and control performance [28, 29]. If the CAV receives trajectory data (such as position and speed)
from a CV traveling farther ahead, it may use a Lagrangian prediction to estimate the future motion of its predecessor.
This requires describing the traffic between the distant CV and the preceding vehicle, which can be achieved by the
proposed Lagrangian model. While this example illustrates the benefits of Lagrangian continuum models, applications
are not limited to this specific scenario. Apart from CAVs, for whom predictions are especially useful, CHVs may
also forecast the future motion of surrounding vehicles or their own, while connected smart infrastructures can also
provide predictions about when and where connected vehicles are expected to encounter a traffic jam and how much
they shall decelerate [30].

In addition to traffic forecasting, Lagrangian models may also help designing traffic control. In particular, traf-
fic flow can be improved by controlling the motions of individual vehicles. This is called Lagrangian traffic con-
trol [31, 32, 33], whose applications range from relying on a single CAV [2, 34, 35] to platoons and moving bot-
tlenecks [36, 37, 38, 39], while approaches to control design involve reinforcement learning [40, 41], optimal con-
trol [42, 43], frequency domain analysis [44, 45, 46] and partial differential equation based designs [47, 48], just to
mention a few. Since the increasing penetration of automated vehicles significantly improves their large-scale effect
on the traffic flow [49], Lagrangian traffic control provides a viable alternative to supplement Eulerian traffic con-
trol approaches realized through the use of traffic lights or ramp metering at fixed locations [50, 51, 52]. Control
applications, therefore, further support the need for Lagrangian models and motivate our study.

The manuscript is organized as follows. Section 2 presents experiments conducted with connected vehicles on
public roads to collect Lagrangian traffic data that will be used by traffic flow models. Section 3 gives an introduction
to approaches and frameworks in traffic modeling, and highlights the differences between Lagrangian and Eulerian
models. Delay free Lagrangian continuum models are constructed in Sec. 4 and the incorporation of time delays is
discussed in Sec. 5. The performance of the models is demonstrated by numerical simulations and connectivity-based
traffic prediction in Sec. 6. Conclusions and comments on future applications are summarized in Sec. 7.
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Figure 1: (a) The route of the connected vehicles in the experimental Lagrangian traffic flow measurement. (b) Illustration of the experimental
setup with five vehicles.

2. Experimental Traffic Flow Measurement Using Connected Vehicles

As a motivation to this study, first we present experimental results. We describe the acquisition of Lagrangian
traffic data, which is a fundamental requirement for any application in connected vehicles. We demonstrate the rich
content of the Lagrangian data that were provided to the vehicles via connectivity, and we show what general features
of the traffic flow can be extracted from the data. The data that we collected will be used as input for the Lagrangian
continuum models in the rest of the paper.

2.1. Experimental Setup

The experiment was conducted in collaboration with the Ford Research and Innovation Center. We drove five
CHVs during the rush hour on the freeways in Michigan between Ann Arbor and Dearborn on a Wednesday morning
as shown by the route highlighted in Fig. 1(a). Although the five vehicles started their journey at the same time and
location, they were driven without the intention to closely follow each other and they did not intend to form a vehicle
platoon. The vehicles were driven naturally, they were not necessarily occupying the same lane; see Fig. 1(b) for
an illustration. We encountered two large traffic jams along the route (one on highway I96 and one on US39). By
recording the trajectories of the five vehicles, we collected Lagrangian traffic data about these congestions.

In order to record the trajectory data, the equipment shown in Fig. 2 was used. GPS antennas were mounted on
top of each vehicle, which allowed the acquisition of position, speed and heading angle signals. The vehicles were
also equipped with on-board V2X units capable of dedicated short range communication (DSRC). These devices were
transmitting basic safety messages (BSMs) that contain the GPS coordinates, speed and heading angle of individual
vehicles. A laptop was connected to each DSRC device via Ethernet to record the BSMs. This way, five sets of data
were collected: each dataset contains the information received by a given connected vehicle about the trajectories of
all five connected vehicles.

Note that V2X allows data transmission within a range of up to a few hundred meters. Once the distance of
the vehicles gets too large, the communication deteriorates and the transmitted data packets are lost. Apart from
the distance, the rate of packet losses is also affected by vegetation, surrounding environment such as neighboring
vehicles or objects that may occlude the communication, and additionally the weather conditions (e.g. rain, snow)
may also modify the achievable range. In this experiment we used laptops on each vehicle to record the ground truth
even when the vehicles were out of the communication range of the other connected vehicles. This allowed us to
analyze the ground truth offline, after the experiments. However, in order to make on-board predictions for a specific
connected vehicle, it is not necessary to record data by laptops on each of the other connected vehicles, only the V2X
communication devices are required.
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Figure 2: The equipment utilized in the experimental Lagrangian traffic flow measurement.

2.2. GPS Data

The equipment discussed above enabled the collection of approximately three hours of Lagrangian traffic data
from the perspective of five CHVs with a sampling time of 0.1 sec. Figure 3 presents the most significant results
which were extracted from the GPS data recorded over 500 seconds while traveling through the first traffic jam. The
data related to the five CHVs is illustrated by five different colors. The results are plotted from an arbitrarily chosen,
so-called host vehicle’s point of view, that is, the inter-vehicular distances are measured relative to the host. Data
received by the host is illustrated by solid lines. Dashed lines show the data that was not received by the host due to
packet losses, but was measured on board of the other vehicles. Additionally, crosses are used to separate the solid
lines from the dashed ones. This way, frequently interrupted communication is visualized by multiple crosses which
show the time instants when a sequence of packet losses started or finished.

Figure 3(a) shows the distance of the five CHVs from the host as a function of time (where the positive and
negative signs indicate whether a vehicle is ahead of or behind the host). The solid lines (red and blue) indicate that
the data are almost never subject to packet losses if it is sent from within 100 meters distance. However, above 200
meters distance, packet losses become more frequent and communication deteriorates, as shown by the dashed lines
and crosses (green and cyan). The farthest distance where packets arrived from was about 500 meters (see the highest
located crosses). Note, however, that these data were taken on a rainy day in heavily congested traffic conditions
where many surrounding vehicles were blocking the communication. With clearer, less dense environment we were
able to detect occasional packets even from about 1000 meters distance. For simplicity, we do not indicate packet
losses in subsequent figures anymore, but we keep in mind the limited range of V2X connectivity.

Figure 3(b) shows the position of the vehicles along the highway, i.e., the accumulated distance (arclength) traveled
by them as a function of time. The trajectories of the five CHVs look qualitatively similar, but shifted in time and
space. This time shift and spatial shift show the propagation of traffic congestions in time and space [53]. A similar
phenomenon is observable in Figs. 3(c,d), where the speed of the vehicles is plotted as a function of time and position,
respectively. The speed fluctuations of the five CHVs are qualitatively similar, but shifted in time as highlighted in
Fig. 3(c) and shifted in space as shown in Fig. 3(d). It is important to notice that the order of the five trajectories
from left to right in Fig. 3(c) is the opposite to the one in Fig. 3(d). That is, the lead vehicle (cyan) meets the traffic
jam the earliest in time (it is the leftmost in Fig. 3(c)), while it is able to travel the longest distance before reaching
the congestions (it is the rightmost in Fig. 3(d)). This indicates the propagation of traffic congestions: vehicles that
reach the traffic jam later in time encounter it earlier in space, since the traffic jam is propagating upstream (i.e., in
the direction opposite to the traffic flow). By evaluating the spatial shift and the time shift between the speed signals,
the jam speed was found to be around 5-6 m/s. The propagation of congestions in time and space is one of the key
features to be captured by the Lagrangian traffic models introduced in Sec. 4 and Sec. 5.

Although the speed profiles in Figs. 3(c,d) look similar qualitatively, there are significant quantitative differences
between them. In particular, the speed fluctuations of the lead vehicles (cyan and green) are amplified by the tail
vehicles (magenta, blue, red): vehicles upstream tend to decelerate more aggressively in congestions, which may
even lead to stop-and-go motion [3]. In other words, perturbations amplify as propagating upstream along a string
of vehicles, which is referred to as the string instability of the traffic flow [54, 55, 56, 57]. This phenomenon is also
observable in Fig. 3(b) where the slope of the trajectories becomes smaller for vehicles upstream. String instability is
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Figure 3: Plot of the experimental data collected during a traffic jam, including (a) the distance of the five vehicles from a selected host vehicle as
a function of time, (b) the position of the vehicles along the highway (i.e., the accumulated distance traveled by them) as a function of time, (c) the
speed of the vehicles as a function of time, (d) the speed as a function of position. The trajectories of the five measured vehicles are indicated by
five colors (cyan, green, magenta, blue, red). Solid lines show data available to the host vehicle, dashed lines show data not received by the host,
and crosses indicate loss or reestablishment of communication with the host.
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Figure 4: Experimental speed data as a function of vehicular position during a traffic jam. The speeds of the five measured vehicles are indicated
by color (green, cyan, blue, red, magenta). The figure also shows information reconstructed from camera data: the lane of the vehicles and the
location of on-ramps (N) and off-ramps (H).

often attributed to the reaction time of human drivers: when humans respond to perturbations with large delay (i.e.,
react to decelerations too late), they tend to amplify them (decelerate more). The string instability phenomenon is
another key feature that is captured by the models in Sec. 5, where time delays play essential role.

2.3. Camera Data
Apart from GPS and V2X, the vehicles were also equipped with cameras on their windshield to record the ground

truth about their environment; see Fig. 2. The camera data contain additional pieces of information, which are not
directly available from the GPS signals: the number of lanes on the road, the lanes in which the vehicles are traveling
and the lane changes; the location of on- and off-ramps along the highway; bridges, tunnels and overpasses (where
the GPS signal may be lost); and surrounding vehicles. Note, however, that these data are restricted to the immediate
surroundings of the vehicles, while V2X connectivity may provide information from beyond the line of sight.

Figure 1(b) illustrates the lane of the five CHVs and their location relative to each other during the second traffic
jam we encountered as reconstructed from the camera data. Furthermore, Fig. 4 shows the corresponding speed
profiles together with information about the environment. All lanes were congested according to the figure, and speed
fluctuations are qualitatively similar regardless the choice of the lane under such conditions. This means that utilizing
Lagrangian data provided by V2X connectivity can be useful even if the data come from a vehicle in another lane.
The location of on- and off-ramps (which were on the right side of the road) are also indicated by symbols N and H,
respectively. Around on-ramps vehicles need to decelerate since others are entering the highway. This deceleration
may trigger a traffic wave, which then propagates upstream. For example, the lead vehicle (green) decelerates at the
first on-ramp in Fig. 4, while the following vehicles decelerate even before reaching the on-ramp. This indicates that
perturbations propagate upstream, and it is observable for the second on-ramp as well. However, once formed, traffic
congestions behave dynamically: they move, amplify and decay along the highway. Thus, vehicles may decelerate
even without the presence of an on-ramp, as shown on the right of Fig. 4.

In what follows, we revisit the basic approaches for traffic flow modeling and build Lagrangian models to predict
the above mentioned experimental observations, including the temporal and spatial shifts of speed fluctuations and
the string instability phenomenon. These models provide Lagrangian traffic predictions that CVs can directly utilize
to improve their performance, and also allow us to study the effects of CAVs on the traffic flow.

3. Approaches for Traffic Flow Description

In general, techniques for traffic flow modeling can be categorized into microscopic and macroscopic approaches.
Microscopic models typically deal with a few vehicles over a time scale of seconds. They trace the motion of a
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Figure 5: Illustration of (a) the Lagrangian and (b) the Eulerian framework for traffic flow description.

discrete, integer number of individual vehicles and use ordinary or delay differential equations to describe their dy-
namics. Macroscopic models, on the other hand, are usually accommodated to study traffic flows over hours in a
road fixed frame. They typically describe traffic flow as continuum via partial differential equations. That is, the term
”microscopic” usually refers to Lagrangian discrete car following models, whereas ”macroscopic” typically indicates
Eulerian continuum traffic flow models. Bridging the two approaches and predicting traffic over the time scale of
minutes is still an open question. This research targets this problem. We focus mainly on continuum models and
investigate the simple scenario of one-directional highway traffic without considering the effect of overtaking.

As summarized in [8], the flow of traffic can be imagined as evolution in a three dimensional space of variables:
time t, location x, and the index n of vehicles. These quantities are illustrated in Fig. 5. Time can be measured from
any chosen initial instant t = 0. The location x is measured along the highway such that it increases downstream
(i.e., in the direction where vehicles are heading) and x = 0 can be chosen at any arbitrary start location of interest.
To distinguish each participating vehicle in traffic, an index n is associated to them, which increases downstream and
n = 0 can be chosen for any arbitrary lead vehicle. We remark that continuum models do not restrict to integer numbers
of vehicles, the vehicle index n can be non-integer as well. A quantity at a non-integer vehicle index represents
interpolation between the integer labeled physical vehicles.

3.1. Independent Variables

In order to describe the traffic flow, one can choose two of the three fundamental quantities (time t, location x
and vehicle index n) as independent variables: (n, t), (x, t) or (n, x). Note that we denote independent variables by
lowercase letters. Then the remaining one fundamental quantity can be chosen as dependent variable, which we
denote by an uppercase letter: X, N or T , respectively. This implies three different frameworks for traffic description.

The first framework is called Lagrangian. Here the motion of individual vehicles is traced to describe the traffic
flow as a function of vehicle index n and time t; see Fig. 5(a). The most fundamental quantity of this framework is the
vehicular position X(n, t) (measured in m). This can be measured directly by equipping vehicles with GPS, and it is a
monotonically increasing function of t and a strictly monotonically increasing function of n (since the vehicle index
increases downstream). The trajectory X(n, t) is illustrated as a family of curves in the (t, X) plane in Fig. 6. The slope
of these curves represents the speed of vehicles, the horizontal distance between two curves is the time between two
vehicles passing the same location, and the vertical distance is the physical distance of two vehicles at a given time.

In the second, Eulerian framework a certain cross section of the road is selected for observation and traffic mea-
sures are formulated as a function of location x and time t; see Fig. 5(b). The fundamental quantity of this framework
is the cumulative flow N(x, t) (measured in vehicles). This indicates the number of vehicles that reach location x by
time t [8, 58], and it is a monotonically increasing function of t and a strictly monotonically decreasing function of x
(since less vehicles reach locations farther along the road). Note that opposite to the vehicle index n, the cumulative
flow decreases downstream. The cumulative flow N(x, t) is shown by a family of curves in the (t,N) plane in Fig. 6.
The slope of these curves is the traffic flux, the horizontal distance between two curves is the time a given vehicle
needs to travel between two locations, and the vertical distance is the number of vehicles between two locations.

The third framework describes traffic as a function of vehicle index n and location x. This framework gives the
travel time T (n, x) (measured in s) needed for vehicle n to reach location x, and it is a strictly monotonically decreasing
function of n and a strictly monotonically increasing function of x (if the vehicles are in motion). However, this
framework is not able to address situations where vehicles stop on the road and multiple travel times correspond to a
single vehicle index and location. Strictly speaking, T (n, x) is not a function in such cases, thus we refrain from using
this framework in the rest of the paper. Still, for the sake of completeness, the travel time T (n, x) is shown as a family
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Figure 6: Qualitative picture of (a) the vehicular position, (b) the cumulative flow, and (c) the travel time.

of curves in the (x,T ) plane in Fig. 6. The slope of these curves is the pace (the inverse of the speed), the horizontal
distance between two curves is the physical distance of vehicles after a given travel time, and the vertical distance is
the time between two vehicles passing the same location. Further details on this framework can be found in [8].

From this point on, we restrict ourselves to the Lagrangian and Eulerian frameworks shown in Fig. 5. Quantities
in the Eulerian framework can be converted to Lagrangian ones by substituting location x with the position X(n, t).
Meanwhile, the Lagrangian to Eulerian transformation is achieved by the substitution of the vehicle index n with the
negative cumulative flow −N(x, t), where the negative sign comes from the convention that the vehicle index increases
downstream (while the cumulative flow decreases downstream). This leads to the identities

x = X(−N(x, t), t) ,
n = −N(X(n, t), t) .

(1)

3.2. Dependent Variables
Apart from the position X(n, t) and the cumulative flow N(x, t), other important traffic measures also exist, such

as the vehicular speed (measured in m/s), the traffic density (measured in vehicles/m) and the traffic flux (measured
in vehicles/s). Speed is the distance traveled over unit time, density is the number of vehicles located on a highway
segment of unit length, while flux is the number of vehicles passing a location over unit time. For the sake of clarity,
we denote these quantities by Roman letters in Lagrangian and by Greek letters in Eulerian framework: speed as
v(n, t) or υ(x, t), density as r(n, t) or ρ(x, t) and flux as q(n, t) or ϕ(x, t), respectively. The relation between Lagrangian
and Eulerian traffic measures is given by

v(n, t) = υ(X(n, t), t) ,
r(n, t) = ρ(X(n, t), t) ,
q(n, t) = ϕ(X(n, t), t) ,

(2)

and

υ(x, t) = v(−N(x, t), t) ,
ρ(x, t) = r(−N(x, t), t) ,
ϕ(x, t) = q(−N(x, t), t) ,

(3)

while the flux is the product of speed and density

q(n, t) = r(n, t)v(n, t) ,
ϕ(x, t) = ρ(x, t)υ(x, t) .

(4)
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Equation (4) implies that only two quantities are independent in the triplet of speed, density and flux. Therefore,
irrespective of using Lagrangian or Eulerian frameworks, one can choose a pair of dependent variables from this
triplet. Alternatively, it is sufficient to choose a single dependent variable if a fundamental quantity — position or
cumulative flow — is used. The reason behind this is that speed, density and flux originate from the derivatives of
position and cumulative flow [8]. The derivative of position with respect to time is speed and with respect to vehicle
index is inverse density:

∂tX(n, t) = v(n, t) ,

∂nX(n, t) =
1

r(n, t)
,

(5)

while the derivative of cumulative flow with respect to time is flux and with respect to position is negative density:

∂tN(x, t) = ϕ(x, t) ,
∂xN(x, t) = −ρ(x, t) .

(6)

Equivalently, in integral form we can write

X(n, t) = X(n, 0) +

∫ t

0
v(n, t̃)dt̃ = X(0, t) +

∫ n

0

1
r(ñ, t)

dñ , (7)

N(x, t) = N(x, 0) +

∫ t

0
ϕ(x, t̃)dt̃ = N(0, t) −

∫ x

0
ρ(x̃, t)dx̃ , (8)

where the four integrals represent the distance traveled by vehicle n over [0, t], the distance between vehicle 0 and n
at time t, the number of vehicles passing location x over [0, t] and the number of vehicles between locations 0 and x
at time t, respectively.

4. Delay Free Kinematic Traffic Flow Models

In what follows, we restrict ourselves to the simplest, so-called kinematic models, which are formulated at the
level of speed. For models constructed at the acceleration level, the reader is referred to [3] and the references therein.
In Sec. 4 we discuss delay free models, then Sec. 5 addresses time delays originating from vehicle dynamics, driver
reaction time, feedback loops or communication. We show both discrete models and the corresponding continuum
traffic description by following our previous work in [59]. Note that discrete car following models are well suited for
directly utilizing trajectory data from V2X connectivity, however, simulating each individual vehicle separately may
make them computationally expensive. Meanwhile, continuum models treat traffic as a flow without distinguishing
each individual vehicle, and they give an aggregated description of traffic. Thus, we focus more on continuum models,
and we highlight the relevance of the Lagrangian formulation of these models in applications related to CVs.

4.1. An Approach for Constructing Continuum Models

Discrete traffic models — that consider an integer number of vehicles — are naturally formulated in Lagrangian
framework, since they are discrete in the vehicle index n. For example, typical car following models use the trajectory
X(n+1, t) of a lead vehicle n+1 and the trajectory X(n, t) of a follower vehicle n; see the illustration in Fig. 7(a). Thus,
the resulting equations involve a unit shift (delay) in the argument n owing to the term X(n+1, t). In order to construct
continuum models corresponding to discrete ones, this unit shift should be eliminated and derivatives with respect to
the vehicle index n should be used. For more details on the relation between discrete and continuum models, see [60].

A potential approach to transition from discrete to continuum models is to expand the follower’s position X(n, t)
with respect to its first argument around the leader’s position X(n + 1, t) as

X(n, t) =

MX∑
m=0

(−1)m

m!
∂m

n X(n + 1, t) = X(n + 1, t) − ∂nX(n + 1, t) +
1
2
∂nnX(n + 1, t) − . . . +

(−1)MX

MX!
∂MX

n X(n + 1, t) , (9)
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Figure 7: Illustration of (a) the car following model, (b) the range policy, and (c) the corresponding fundamental diagram.

where ∂m
n denotes the m-th derivative with respect to n and MX is the order of Taylor expansion. Note that physically (9)

establishes the relation between the distance d(n, t) = X(n + 1, t) − X(n, t) and the inverse ∂nX(n, t) of the density
r(n, t); see [61] for a study on this topic. Similarly, Taylor expansion can also be done for the speed up to order Mv:

∂tX(n, t) =

Mv∑
m=0

(−1)m

m!
∂m

n ∂tX(n+1, t) = ∂tX(n+1, t)−∂ntX(n+1, t)+
1
2
∂nntX(n+1, t)−. . .+

(−1)Mv

Mv!
∂Mv

n ∂tX(n+1, t) . (10)

Hereafter, we use the expansions (9)-(10) to build Lagrangian continuum models from discrete ones, then we drive
the constructed models with the experimental data to make Lagrangian traffic predictions.

4.2. Continuum Models Constructed from a Benchmark Discrete Model

Below we consider a simple discrete model as a basis to construct continuum traffic flow models via the approach
discussed above. As one of the most essential kinematic traffic flow models, we consider Newell’s model [53, 62].
This model focuses on a leader-follower pair of vehicles shown in Fig. 7. It assumes that vehicle n controls its speed
v(n, t) based on the headway h(n, t) or, equivalently, the distance d(n, t) from its predecessor n + 1. This can be given
in the form of the ordinary differential equation (ODE)

∂tX(n, t) = V(X(n + 1, t) − X(n, t)) , (11)

where the function V defines the distance-velocity relationship, which is also referred to as the range policy in the rest
of the paper. Note that (11) assumes identical vehicles with identical range policies (same V for each n), but it can
easily be extended to heterogeneous traffic (with an n-dependent range policy).

The range policy is illustrated in Fig. 7(b). Accordingly, vehicle n needs to stop below a safety distance dst and
the assigned speed is zero. Above a certain distance dgo, the vehicle shall travel with the speed limit vmax. Between dst
and dgo, the speed monotonically increases against the distance: the farther the vehicles move away from each other,
the faster they shall travel. For example, if this monotonically increasing tendency is linear, the range policy becomes

V(d) =


0 if d ≤ dst ,

κ(d − dst) if dst < d < dgo ,

vmax if dgo ≤ d ,
(12)

where dgo = dst + vmax/κ, and κ denotes the slope of the range policy; see the illustration in Fig. 7(b). Note that 1/κ
can also be interpreted as the time gap between the vehicles if dst is equal to the length of the vehicles.

Now let us approximate the discrete model (11) with a continuum one via the expansions (9)-(10). Substitution
into (11) and shifting the index n + 1 to n leads to the partial differential equation (PDE)

Mv∑
m=0

(−1)m

m!
∂m

n ∂tX(n, t) = V

− MX∑
m=1

(−1)m

m!
∂m

n X(n, t)

 . (13)

Below we discuss an important special case of this model and then give extensions to models with time delay.
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4.3. A Special Case: the Lighthill-Whitham-Richards Model
The simplest, lowest order continuum approximation of (11) is obtained from (13) by substituting Mv = 0 and

MX = 1. This leads to the continuum model

∂tX(n, t) = V(∂nX(n, t)) . (14)

If the middle, linear part of the range policy (12) is effective for all n and t, this equation is an affine PDE. Furthermore,
if the initial condition is the equidistant spacing X(n, 0) = X(0, n/κ) + ndst, the solution is the traveling wave

X(n, t) = X
(
0, t +

n
κ

)
+ ndst , (15)

which can also be obtained from Newell’s model in [53]. This implies shifted vehicle trajectories (similarly to the
ones observed in Fig. 3(a)) with time shift 1/κ and spatial shift dst, while the corresponding wave speed is w = κdst.

Notice that the difference of positions in (11), which represents inter-vehicular distance, is replaced by a position
derivative in (14), which is related to traffic density according to (5). Therefore, model (14) can also be formulated as
a speed-density relationship

∂tX(n, t) = V

(
1

∂nX(n, t)

)
, (16)

where the function V(r) = V(1/r) describes that the denser the traffic gets, the slower the vehicles travel. Let us
supplement model (16) with the identity

∂tnX(n, t) − ∂ntX(n, t) = 0 . (17)

Hereinafter, we use this identity to show that (16)-(17) is in fact the Lagrangian equivalent of the well known Lighthill-
Whitham-Richards (LWR) model [9, 10]. The various forms of the LWR model, including the Lagrangian (16), can
also be found in [63].

To show the equivalence, we formulate the model in terms of Lagrangian speed v(n, t) and density r(n, t) by
substituting (5) into (17) and (16):

∂t
1

r(n, t)
− ∂nv(n, t) = 0 ,

v(n, t) = V(r(n, t)) ,
(18)

see also in [63, 64]. The first row of (18) can be interpreted as a conservation law for the number of vehicles partici-
pating in traffic, while the second row tells how the traffic is modeled.

Now let us represent the model in Eulerian framework. We substitute (2) into (18), carry out differentiations
according to the chain rule, use (5), and finally substitute x = X(n, t). This leads to the classical Eulerian form of the
LWR model using speed υ(x, t) and density ρ(x, t), that is,

∂tρ(x, t) + ∂x(ρ(x, t)υ(x, t)) = 0 ,
υ(x, t) = V(ρ(x, t)) ,

(19)

or by using flux ϕ(x, t) and density ρ(x, t) it becomes

∂tρ(x, t) + ∂xϕ(x, t) = 0 ,
ϕ(x, t) = ρ(x, t)V(ρ(x, t)) .

(20)

The first row of (20) describes the conservation of vehicles on the road, which is analogous to the conservation of
mass in fluid dynamics. The second row specifies the flux-density relation via the function Q(ρ) := ρV(ρ) = ρV(1/ρ).
The relation corresponding to (12) reads

Q(ρ) =


0 if ρst ≤ ρ ,

κ

(
1 −

ρ

ρst

)
if ρgo < ρ < ρst ,

ρvmax if ρ ≤ ρgo ,

(21)

11



Figure 8: The results of numerical simulations (thin) using the LWR model (14) compared to the experimental Lagrangian traffic data (thick): (a)
the speed of vehicles, (b) their distance from the lead vehicle (cyan). The parameters of the model are dst = 10 m, vmax = 30 m/s and 1/κ = 1.5 s.

where ρst = 1/dst and ρgo = 1/dgo. Function Q(ρ) is illustrated by the well known fundamental diagram in Fig. 7(c).
Note that the slope w = κ/ρst = κdst can also be interpreted as the speed of the traveling wave solutions of (20), that
is, the speed of congestion waves in the traffic flow.

Finally, the LWR model can also be formulated in Eulerian framework using the cumulative flow N(x, t). By
substituting (6) into (20) we obtain

−∂txN(x, t) + ∂xtN(x, t) = 0 ,
∂tN(x, t) = −∂xN(x, t)V(−∂xN(x, t)) ,

(22)

which can also be found in [58, 63]. Similarly to (17), the first row of (22) is an identity, which implies that the
definitions (5) and (6) of the densities r(n, t) and ρ(x, t) ensure the fulfillment of the conservation law of vehicles.

The equivalence of (20) with (16)-(17) shows that the LWR model is in fact related to Newell’s model (11) by a
low order Taylor expansion (MX = 1, Mv = 0) in (13). Higher order expansions (MX > 1, Mv > 0) are also possible,
see also Berg’s work [61] for a similar approach. The higher order terms can be considered as source terms in the
LWR model. The literature on continuum traffic flow models contains various attempts to specify reasonable source
terms, which lead to sophisticated models capturing more details about the evolution of traffic flow [65, 66, 67, 68].
However, the construction and physical explanation of these source terms is nontrivial. In this paper, these terms
were derived from the approximation (Taylor expansion) of a discrete model. Below we show that these higher order
terms become significant when time delays are incorporated into the equations. Before dealing with the delays, we
demonstrate the performance of the delay free models and show why delays are necessary to include.

4.4. Numerical Simulations Utilizing Lagrangian Traffic Data
We conducted numerical simulations for the LWR model that was driven by the Lagrangian traffic data we had

collected during our experiment. The results are summarized in Fig. 8. Panel (a) shows the speed v(n, t) of the vehicles,
and panel (b) shows the distance D(n, t) = X(0, t) − X(n, t) of the vehicles from the lead vehicle (thick cyan curve)
whose motion was used to drive the model. The experimental data are indicated by thick lines and the simulation
results are shown by thin lines. Since we drove multiple vehicles in the traffic flow, we can compare their measured
trajectories to the simulated ones. If the model was a perfect representation of reality, four of the simulated results
(thin gray lines) would coincide with the four measured follower trajectories (thick green, magenta, blue, red).

We used the Lagrangian form (14) of the LWR model for the simulations, since it directly includes the measure-
ment data as boundary condition. Considering trajectory data is also possible in the Eulerian frame, however, the
underlying mathematics become more complicated due to the occurrence of internal boundary conditions [69, 70].
Here we selected the trajectory X0(t) of the measured lead vehicle (thick cyan) and imposed it as boundary condition
on the Lagrangian model: X(0, t) = X0(t). Then we simulated the trajectory of 20 follower vehicles (n ∈ [−20, 0]) with
the initial condition X(n, 0) = X(0, 0) + nd0 where d0 is the uniform initial spacing between the simulated vehicles.
We selected d0 = dst, since we used experimental data where vehicles start from standstill. We assumed the parame-
ter values dst = 10 m, vmax = 30 m/s and 1/κ = 1.5 s. We discretized (14) by the Lax-Wendroff scheme [71] using a
time step ∆t = 0.1 s and a step of ∆n = 0.1 in the vehicle index. Notice that trajectories corresponding to non-integer
vehicle indices were also computed but they are not plotted in Fig. 8.
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Figure 8(a) shows that the LWR model outputs repeated speed patterns similarly to the traveling wave solu-
tions (15), i.e., it is able to capture the propagation of traffic congestions in time. Their propagation in space is
also reproduced by the model, since the distance of the simulated vehicles in Fig. 8(b) resembles the measured inter-
vehicular distances. Note that the distance between the vehicles is affected by both the spatial shift dst and the distance
that the vehicles travel over the time shift 1/κ. Still, the model is simple and allows capturing two features — the prop-
agation of congestions in time and space — using only two tunable parameters: κ and dst.

Although the propagation of speed fluctuations can be reproduced, the model is not able to capture amplifying or
decaying speed fluctuations, i.e., string unstable or string stable behavior. The amplitude of speed fluctuations is the
same for each vehicle; see Fig. 8(a). This is due to the hyperbolic nature of the governing PDE [8], whose spectrum
and string stability properties are further discussed in Appendix A. In what follows, our aim is to capture string
stability properties with the addition of a single tunable parameter to the model: the time delay.

5. Kinematic Traffic Flow Models with Time Delay

Models (11) and (13) of Sec. 4 address the relation between the instantaneous values of certain traffic measures.
However, human drivers tend to react to rather the past state of traffic than the instantaneous state due to their reaction
time [3]. This can be modeled by time delays in the governing equations. Delays can also describe the dead time in the
feedback loops of automated vehicles, communication latency in connected vehicles, or even the vehicle dynamics,
i.e., the fact that vehicles need a certain time to reach a desired speed. Hereinafter we discuss how to incorporate time
delays into the models introduced in Sec. 4.

5.1. Construction of Continuum Models with Delay

The delayed counterpart of Newell’s discrete model (11) can be found in [72]. Accordingly, vehicle n adjusts its
speed v(n, t) based on the past value d(n, t − τ) of the distance from its predecessor. This leads to the delay differential
equation (DDE)

∂tX(n, t) = V(X(n + 1, t − τ) − X(n, t − τ)) , (23)

where τ denotes the time delay. Since this delay corresponds to a certain vehicle, it is Lagrangian delay. That is, the
vehicle index in the first argument of X is not affected by the delay, it is the same as in (11). Model (23) involves a
constant delay τ, but it can be extended to the case where the delay τ(n, t) depends on the vehicle index n (to represent
the heterogeneity of traffic flow; see Sec. 5.4) and on time t.

The continuum counterpart of the discrete time delay model (23) can be constructed similarly to Sec. 4, by substi-
tuting (9)-(10) into (23). This leads to the partial delay differential equation (PDDE)

Mv∑
m=0

(−1)m

m!
∂m

n ∂tX(n, t) = V

− MX∑
m=1

(−1)m

m!
∂m

n X(n, t − τ)

 , (24)

cf. (13).

5.2. Delayed Lighthill-Whitham-Richards Model

Again let us consider the lowest order expansion (MX = 1, Mv = 0) as a special case, which leads to the delayed
LWR model. We use this example to demonstrate two important conclusions of this paper. On one hand, we highlight
that the formulation of delayed continuum models is much more complicated in the Eulerian framework than in the
Lagrangian one, since the delays are fundamentally of Lagrangian nature. On the other hand, we show that simply
adding the delay to the LWR model leads to string unstable results regardless the value of the delay, and higher order
terms are also required during the construction of delayed continuum models.

Substituting MX = 1, Mv = 0 into (24) gives the delayed LWR model in the form

∂tX(n, t) = V(∂nX(n, t − τ)) , (25)
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cf. (14). This model, supplemented by the identity (17), can be transformed into various forms depending on the
choice of dependent and independent variables, similarly to the delay free LWR model in Sec. 4. The delayed LWR
model expressed with Lagrangian speed v(n, t) and density r(n, t) can also be found in [21] and it reads

∂t
1

r(n, t)
− ∂nv(n, t) = 0 ,

v(n, t) = V(r(n, t − τ)) ,
(26)

cf. (18). Notice that the velocity depends on the past value of the density at time t − τ instead of the instantaneous
value at time t. This model can be transformed to Eulerian framework the same way as (18) in Sec. 4. The Eulerian
model with speed υ(x, t) and density ρ(x, t) becomes

∂tρ(x, t) + ∂x(ρ(x, t)υ(x, t)) = 0 ,
υ(x, t) = V(ρ(x − ξ, t − τ)) ,

(27)

cf. (19), or with the cumulative flow N(x, t) it reads

∂tN(x, t) = −∂xN(x, t)V(−∂xN(x − ξ, t − τ)) , (28)

cf. (22).
Notice that the time delay τ is accompanied by a spatial delay ξ in the Eulerian models (27) and (28). This delay

originates from the fact that the past time t − τ corresponds to a past location x − ξ on the highway. The spatial delay
ξ is the displacement of vehicle n over [t − τ, t], which expressed as

ξ = X(n, t) − X(n, t − τ) , (29)

or

ξ =

∫ t

t−τ
v(n, t̃)dt̃ , (30)

using Lagrangian traffic measures. The expression of the spatial delay ξ is more complicated in the Eulerian frame-
work. Since time t and position x correspond to the same vehicle as t − τ and x − ξ, the equation defining ξ becomes

N(x, t) = N(x − ξ, t − τ) , (31)

or, by subtracting N(x, t − τ) from both sides and using (8) and (4), we can also write∫ t

t−τ
ρ(x, t̃)υ(x, t̃)dt̃ =

∫ x

x−ξ
ρ(x̃, t − τ)dx̃ . (32)

Equations (31) or (32) implicitly define the spatial delay ξ as a function of the time delay τ and the states N(x, t)
or ρ(x, t) and υ(x, t). Both Eulerian formulations, (28) with (31) and (27) with (32), use a PDDE with constant time
delay and state-dependent spatial delay. This spatial delay was neglected in the PDDE models constructed in [20, 21].
Since state-dependent delays make the analysis of differential equations significantly more difficult [73], it is more
favorable to use the Lagrangian framework when introducing delays. Lagrangian time delays can naturally be added
to the model without modifying argument n. This highlights that in fact the classical Eulerian form (19) of the LWR
model is the least suitable form for including (Lagrangian) time delays. In Eulerian framework one needs to consider
that past events at time t − τ took place at location x − ξ (not simply x) due to the propagation of traffic waves.

5.3. Higher Order Models with Delay
The delayed LWR model is the lowest order (MX = 1, Mv = 0) special case of PDDE (24). As shown by Appendix

A, this model exhibits string unstable behavior regardless the value of the delay. However, the main purpose of
introducing the delay is tuning string stability properties with the incorporation of a single additional parameter only.
In typical car following models, one shall expect string stable behavior for small enough delays and string instability
for large delays [3]. This cannot be captured by the delayed LWR model; see the proof in Appendix A.
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Figure 9: (a-e) The results of numerical simulations (thin) using the delayed Lagrangian continuum model (24) that was driven by experimental
Lagrangian traffic data (thick). The panels correspond to different model orders MX , Mv and different delays τ as indicated. (f) Simulation results
for the discrete car following model (23). The parameters of the models are dst = 10 m, vmax = 30 m/s and 1/κ = 1.5 s.

Therefore, higher order terms in (24) are considered to provide higher fidelity string stability properties. The
simplest PDDE with a higher order term is obtained by choosing MX = Mv = 1 in (24):

∂tX(n, t) − ∂tnX(n, t) = V (∂nX(n, t − τ)) . (33)

The performance of this model is evaluated by simulations; see Figs. 9(a,b). All simulations are conducted using
a forward-time backward-space finite difference scheme with step sizes ∆t = 0.01 s and ∆n = 0.1. This numerical
scheme was chosen because congestion waves propagate forward in time and backward in space (upstream). This
scheme was also shown to be the Lagrangian counterpart of the Godunov scheme in [19] (in the case of the delay
free LWR model with piecewise linear fundamental diagram), which is a widely used scheme for kinematic traffic
flow models. The boundary condition is still the given measured leader trajectory X(0, t) = X0(t), whereas the initial
condition is X(n, θ) = X(0, 0) + nd0, θ ∈ [−τ, 0], d0 = dst, since the vehicles started from standstill in the experiment.
The parameters κ, dst and vmax are kept the same as in Fig. 8. The delay in Fig. 9(a) is τ = 1 s, which is a typical delay
considering vehicle dynamics and human driver reaction time [74]. The effect of a larger delay, τ = 1.8 s, is shown in
Fig. 9(b). This figure proves that by incorporating a single additional parameter, the time delay τ, string (in)stability
can be captured, as opposed to the outcome of the LWR model in Fig. 8. The value of the delay even allows us to tune
how string (un)stable the results are: small enough delays result in string stable behavior (see Fig. 9(a)), while large
delays make the model string unstable (see Fig. 9(b)). This relationship is proven in Appendix A, where analytical
formulas are derived for the stability limit in terms of the parameters τ and κ.

Stability is also affected by the order of expansion in (24). Figures 9(c,d,e) present simulation results for sec-
ond, third and fourth order (MX = Mv = 2, 3, 4) expansions in (24) for τ = 1 s. For these higher order models, addi-
tional boundary conditions must be defined. For cases max(MX ,Mv) ≥ 2, the second boundary condition prescribes
∂nX(0, t) = 1/r0(t), which is the inverse of the density perceived by the measured lead vehicle. We approximated this
inverse density by applying the inverse of the range policy (12) to the leader’s measured speed: ∂nX(0, t) ≈ V−1(v0(t))
(where we prescribed ρst and ρgo for the non-invertible cases v0(t) = 0 and v0(t) ≥ vmax, respectively). For cases
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Figure 10: The results of numerical simulations (thin) using the delayed Lagrangian continuum model (34) that was driven by experimental
Lagrangian traffic data (thick cyan). The figure shows the dynamics of heterogeneous traffic flow consisting of connected human-driven vehicles
(CHVs) and connected automated vehicles (CAVs). The penetration of CAVs in the traffic flow is indicated in each panel. The order of the model is
MX = Mv = 3, the range policy parameters for both CHVs and CAVs are dst = 10 m, vmax = 30 m/s and 1/κ = 1.5 s, whereas the delays associated
with CHVs and CAVs are τCHV = 1 s and τCAV = 0.5 s, respectively.

max(MX ,Mv) ≥ 3, the remaining boundary conditions are ∂m
n X(0, t) = 0, m = 2, ...,max(MX ,Mv) − 1, which assume

that the local change of density at the leader’s position is negligible.
As the orders MX , Mv are increased, the model behaves in a more string unstable manner, and the stability prop-

erties of (24) converge to those of the discrete model (23); see Appendix A for proof. Figure 9(f) shows simulation
results for the discrete car following model (23). It can be seen that although the string instability of traffic is captured
by low order continuum models, there is difference from the car following model in the degree of instability. The
second and third order expansions in Figs. 9(c,d) give reasonably good agreement with the experimental results. This
way, PDDE (24) is able to capture (i) the propagation of congestions in time, (ii) the propagation of congestions in
space, and (iii) the string (in)stability of traffic, by tuning three parameters: κ, dst and τ. Note that including more
higher order terms does not modify the results significantly (qualitatively), but it increases the complexity of the
model. Therefore, we refrain from using models of order MX > 3 or Mv > 3.

5.4. Extension to Heterogeneous Traffic Flows

Lagrangian models are also well suited for investigating heterogeneous traffic flows. In the near term, there will
exist a period of mixed traffic, which involves connected and non-connected, human-driven and automated vehicles
as well. For example, CAVs may drive according to a different range policy than the one describing humans, and
delays associated with CAVs are typically smaller than the ones related to CHVs. Therefore, the delayed Lagrangian
continuum model (24) can be extended to heterogeneous traffic by considering that the range policy and the delay
explicitly depend on the vehicle index n, according to the functions V(n, d) and τ(n), respectively. This leads to

Mv∑
m=0

(−1)m

m!
∂m

n ∂tX(n, t) = V

n,− MX∑
m=1

(−1)m

m!
∂m

n X(n, t − τ(n))

 . (34)

Note that explicit time dependency can be considered in a similar manner by taking V(n, t, d) and τ(n, t).
Model (34) allows one to study the effect of range policy design and delays associated with CAVs on the traffic

flow, and also the impact of CAV penetration rate. This is demonstrated in Fig. 10 where mixed traffic is considered
with CHVs and 0%, 10%, 20% and 50% penetration of CAVs for the third order case MX = Mv = 3. Here the
trajectory of the lead vehicle (thick line) is still taken from the experimental data recorded on a CHV, while the CAVs
were injected into the traffic flow in the simulations only, they were not present in the experiment. For simplicity, the
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Figure 11: (a) Speed estimation for an ego vehicle (thin magenta) obtained from the delayed Lagrangian continuum model (24) based on the
trajectory data (thick cyan) communicated through V2X connectivity. The actual measured speed signal of the ego vehicle is also shown (thick
magenta). The parameters of the model are MX = Mv = 2, dst = 10 m, vmax = 30 m/s, 1/κ = 1.5 s and τ = 1 s. (b) The RMS error of the speed
estimation as a function of the delay parameter τ. (c) The RMS error relative to the delay free case τ = 0.

range policy V(n, d) is kept the same for all vehicles (independent of n), given by (12) with dst = 10 m, vmax = 30 m/s
and 1/κ = 1.5 s as before. The delay τ(n), on the other hand, is chosen to be periodic in n with period according to the
penetration rate of CAVs. Provided that every K-th vehicle is a CAV, the delay is given by

τ(n) =

τCAV if n ∈ [ jK − 1, jK) , j ∈ Z+ ,

τCHV otherwise ,
(35)

where τCAV and τCHV are the delays associated with CAVs and CHVs, respectively. Their values are τCAV = 0.5 s and
τCHV = 1 s in Fig. 10. Note that any arbitrary delay function τ(n) could be considered similarly, and the range policy
parameters dst, dgo and vmax could also be vehicle-dependent analogously.

Figure 10 shows that as the penetration of CAVs is increased, they are able to mitigate traffic congestions with
smooth driving. Although a relatively large penetration is required in this simple example to achieve this goal, other,
more sophisticated control laws leveraging connectivity with multiple vehicles could also be applied to provide ben-
efits even at low penetrations; see [2, 34, 35, 40, 43]. The control of CAVs is out of scope of this paper, but here we
highlight that Lagrangian approaches are suited for control design and penetration studies. We remark that one can
also utilize multi-class traffic models [18, 19, 75] to study heterogeneous traffic flows, or coupled Eulerian-Lagrangian
approaches [37, 38] which allow large-scale penetration studies while incorporating Eulerian data as well.

6. Traffic Prediction Based on V2X Connectivity

The delayed Lagrangian continuum model (24) can be utilized by connected vehicles to make traffic predictions
based on available V2X communication data. If a CV receives trajectory data from another CV downstream, it can
use the data as boundary condition to simulate model (24) forward in time. The simulated trajectories represent an
estimation of the traffic flow, and they can be used to predict the future motion of the CV or its predecessors. Such
on-board predictions can be tailored to the needs of the CV, whom may exploit them to plan and control its motion
or to optimize its operation. Below we demonstrate such prediction capability by considering that trajectory data
from a downstream lead vehicle (thick cyan in Fig. 9) is transmitted to an ego vehicle (thick magenta in Fig. 9) via
V2X connectivity. First we calculate the potentially achievable accuracy of model (24) by comparing simulations to
measured trajectories offline. Then we discuss how predictions about the future can be made in real time, on board of
the CV.

6.1. Model-Based Traffic Estimation and Its Accuracy
In order to quantify the accuracy of model (24), we simulated it by utilizing the lead vehicle’s measured trajectory

(thick cyan) as boundary condition; see Fig. 9. Then we compared the results to the measured trajectory of a given
ego vehicle (thick magenta). Note that in practice it is unknown how many vehicles are located between the lead
and the ego vehicle, i.e., the vehicle index n is not known for the communicated trajectory data. Still, the number
of vehicles between the lead and the ego vehicle can be estimated based on their positions. Therefore, at each time
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Figure 12: Illustration of connectivity-based on-board traffic prediction via the delayed Lagrangian continuum model (24). The measured trajecto-
ries that are available for prediction via V2X connectivity are shown by thick solid lines, whereas the measured trajectories that are not yet available
at the time of prediction are indicated by dashed lines. (a) Simulated trajectories (thin lines) representing the predicted position after tp = 120 s.
(b,c) Speed predictions (thin lines) corresponding to the experimentally measured connected vehicles after tp = 120 s and tp = 180 s, respectively.
The relevant prediction horizon is shaded with gray. (d) The prediction horizon and (e) the RMS prediction error and (f) the estimated vehicle index
as a function of time. The model parameters are MX = Mv = 2, dst = 10 m, vmax = 30 m/s, 1/κ = 1.5 s and τ = 1 s.

instant t we selected a simulated vehicle ne(t) whose position X(ne(t), t) is closest to the measured ego vehicle. The
speed v(ne(t), t) of the selected simulated vehicle can be considered as a model-based estimation of the speed of the
ego vehicle. This estimation is depicted by a thin magenta line in Fig. 11(a), whereas the actual measured motion is
indicated by a thick magenta line. The parameters here are the same as in Fig. 9(c).

By comparing the model outcome (thin magenta) to the ground truth (thick magenta) we can confirm that the
general trend of speed fluctuations is well captured by the model. With the selected delay τ = 1 s, the model exhibits
string unstable behavior, which was indeed observed during the majority of the experiment. However, an apparent
qualitative mismatch occurs between the prediction and experiment in the region marked by circle. Here the experi-
mental vehicles started to attenuate velocity fluctuations instead of behaving in a string unstable manner. Model (24)
with a fixed delay τ is not able to capture such changes in driving behavior over time, but it could potentially be
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captured by time varying parameters (such as delay τ(t)) or more detailed models (such as acceleration-based ones).
We quantified the error of the model-based speed estimation for various values of the constant delay τ. We

calculated the root mean square (RMS) error eRMS between the calculated and measured speed for the ego vehicle
over the time interval shown in Fig. 11(a) as a function of the delay τ; see Fig. 11(b). Figure 11(c) shows the relative
error eRMS,rel(τ) = eRMS(τ)/eRMS(0) with respect to the delay free case τ = 0. It can observed that there is an optimal,
nonzero value of the delay that gives the most accurate speed estimation based on this metric (which is τ ≈ 0.8 s in
this example). Figures 9 and 11 highlight that the delay parameter τ should be selected carefully: too small delay
results in string stable behavior instead of the typical string unstable one (i.e., qualitative mismatch), whereas too
large delay results in excessive string instability and large error (i.e., quantitative mismatch). We remark that here
the speed signals were used directly, while various average speed measures also exist to evaluate the performance of
traffic flow models [76].

6.2. Towards On-Board Traffic Prediction

One significant benefit of the delayed Lagrangian continuum model (24) is that it allows one to predict the future
state of traffic on board in an online fashion. To make a prediction at time tp, trajectory data over t ≤ tp can be utilized
only, while no data are available over t > tp. This is illustrated in Fig. 12(a) for tp = 120 s, where the trajectories
available for prediction are shown by thick solid lines, whereas the unavailable data (measured after tp) is depicted by
dashed lines. The aim is to predict an ego vehicle’s future motion (dashed magenta) based on a lead vehicle’s motion
measured up to tp (thick cyan).

Figure 12(a) illustrates simulation results (thin lines) based on the lead vehicle’s measured trajectory (thick cyan)
for the same parameters as in Fig. 9(c). The predicted trajectory of a given ego vehicle (magenta) can be obtained
from the simulation results similarly to Sec. 6.1. At time tp we select the simulated vehicle ne(tp) whose position
X(ne(tp), tp) is closest to the measured ego vehicle. Then the speed v(ne(tp), t) of the simulated vehicle is the predicted
speed of the ego vehicle over t > tp. Figures 12(b,c) illustrate the speed prediction (thin magenta) for tp = 120 s and
tp = 180 s, respectively. The prediction (thin magenta) closely matches measured results (dashed magenta).

Note that in order to simulate model (24) into the future, the lead vehicle’s trajectory must also be predicted for
t > tp. Here we use the constant speed prediction X(0, t) ≈ X(0, tp) + v(0, tp)(t − tp) for t > tp; see the thin cyan lines in
Figs. 12(a-c). Although the lead vehicle’s predicted speed (thin cyan) does not match its actual future speed (dashed
cyan), the simulated trajectories are still valid over a horizon t ∈ [tp, th(n)], since the lead vehicle’s speed fluctuations
up to present (thick cyan) propagate and affect the upstream traffic in the future. Figure 12(a) shows that the farther
the simulated vehicles are from the lead vehicle at tp, the larger the horizon th(n) (it monotonically increases with
decreasing n). Beyond the horizon the predicted speeds tend to a constant due to the constant speed prediction about
the lead vehicle. Thus, predictions are valid only until the horizon is reached.

The prediction horizon for the ego vehicle (measured by th(ne) − tp) is plotted in Fig. 12(d). The prediction horizon
th(n) can be calculated as follows for the simplest special case of the model. Recall that when the middle, linear part
of the range policy (12) is effective for the LWR model (MX = 1, Mv = 0, τ = 0), the solutions are the traveling waves
given by (15). Substituting t = th(n) and t + n/κ = tp into (15) gives the prediction horizon for vehicle n implicitly by

X(n, th(n)) = X(0, tp) − w(th(n) − tp) , (36)

where w = κdst denotes the wave speed. Formula (36) was evaluated numerically to generate Fig. 12(d). The implicit
formula can be reduced to the explicit expression

th(n) = tp +
X(0, tp) − X(n, tp)

v(n, tp) + w
(37)

if the speed of vehicle n is constant v(n, t) ≡ v(n, tp) over t ∈ [tp, th(n)]. Formula (37) gives an estimate for the general
case of model (24) and for non-constant speed as well, and it shows approximately how far the ego vehicle needs
trajectory data from to achieve a desired prediction horizon.

Figure. 12(e) shows the RMS error of the ego vehicle’s speed prediction relative to its measured speed as a function
of time. The error was calculated over the prediction horizon shown by the gray shading in Figs. 12(b,c) and by the
curve in Fig 12(d). The RMS error in Fig. 12(e) is typically around 2 m/s, and an example for larger prediction error
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is illustrated in Fig.12(b) where the larger error is mainly caused by the time mismatch between the predicted and the
actual speed fluctuations.

Finally, Fig. 12(f) indicates the estimated vehicle index ne of the ego vehicle. Note that the vehicle index is
unknown in practice and its estimate is an outcome of the prediction algorithm. To investigate sensitivity with respect
to vehicle index estimation, we ran simulations with three different parameters, dst = 7.5, 10 and 12.5 m, and evaluated
ne along with the prediction horizon and accuracy; see Figs. 12(d-f). The three different parameter values cover a
relatively large range of wave speeds: w = 5, 6.7 and 8.3 m/s. According to Fig. 12(f), significant changes in the wave
speed affect the estimated vehicle index, prediction horizon and accuracy, but the results are acceptable if the wave
speed is kept reasonably low.

The method described above allows V2X connectivity-based traffic prediction on board of CVs. To have large
enough prediction horizon, V2X connectivity must provide trajectory information from far enough distance down-
stream the ego vehicle. Note that the range of vehicle-to-vehicle (V2V) connectivity is limited, thus to extend this
range and achieve a large prediction horizon, one shall utilize other means of V2X connectivity as well, such as
vehicle-to-infrastructure (V2I) communication. In addition, the trajectory information must be available over a suf-
ficient duration of time: approximately the same duration as the desired prediction. Finally, to have large enough
update rate of prediction (i.e., to be able to update tp frequently), the simulations must be done in a computationally
efficient manner. However, going into details about computational efficiency for real-time applications is out of scope
of this paper.

7. Conclusions and Future Work

This paper presented an approach to build Lagrangian continuum models that directly exploit the availability of
vehicle trajectory data provided by vehicle-to-everything (V2X) connectivity. The constructed model, given by (24),
was able to capture three essential phenomena: the propagation of congestions in time, the propagation of congestions
in space, and the string (in)stability of traffic, by involving only three tunable parameters. One of these parameters
was the time delay that was included to model the vehicle dynamics, driver reaction time, feedback delays and com-
munication delays. The incorporation of delays into continuum models is nontrivial, this is one of the key theoretical
contributions of this work. It was shown that the Lagrangian framework is more convenient to do this, and that the
order of the model must be selected carefully to capture string stability properties. The performance of the model was
demonstrated by simulations, and string stability conditions were derived analytically to analyze the effect of delays
on the traffic flow.

The constructed model can be directly utilized by connected vehicles (CVs) to make Lagrangian traffic predictions.
Via V2X connectivity, a CV may obtain information about the motion of other connected vehicles ahead and may use
these data to simulate model (24) to predict downstream traffic. Via the prediction, the CV is able to estimate the
motion of preceding non-connected vehicles, as well as its own anticipated future behavior in traffic (for instance,
when and where it is expected to meet a congestion and how much it shall decelerate). Provided that predictions
are made on board, this information can be utilized in the control design of connected automated vehicles (CAVs)
to optimize their operation, or to make anticipative actions and facilitate smooth driving, which is beneficial for
both the CAV and the surrounding traffic. These benefits include mitigating traffic congestions, reducing the energy
consumption of CAVs and other neighboring vehicles, as well as facilitating the optimal operation of on-board systems
relying on speed previews. In this paper, we focused on predicting traffic in the scale of minutes involving dozens of
vehicles, while looking at traffic at larger scale is left future research.

The predictions show the usefulness of Lagrangian models. In Lagrangian framework, trajectory data can directly
be utilized as boundary condition, delays can naturally be taken into account, and the resulting predictions can be
tailored to the needs of CVs. In addition, it is natural to extend Lagrangian models to consider heterogeneous traffic
flows with a mixture of human-driven and connected automated vehicles. This allows one to study how the penetration
of CAVs and their control design affect the overall traffic flow. A potential future extension of this work is investigating
multi-lane and multi-class traffic to further characterize the effect of CAVs on the flow.

Note that the results of Lagrangian models can be converted to Eulerian traffic measures. This facilitates the
fusion of models in the two frameworks and the creation of coupled models. Future work may focus on integrating
Lagrangian and Eulerian approaches to be able to consider vehicle-based information (trajectory data) and location-
based information (related to road, infrastructure and geography) at the same time.
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Finally, although this paper is restricted to velocity-based, so-called kinematic models, the approach of construct-
ing and using delayed Lagrangian continuum models can be applied at the acceleration level, too. Our future work
includes the extension of this concept to acceleration-based models. One important feature of these models is that they
directly take into account the acceleration capabilities (limits) of vehicles. Furthermore, since these models involve
the commanded acceleration, they are more suitable for control design of CAVs.

Appendix A. String Stability Analysis

Here, we prove that the constructed models are well posed in terms of stability properties. We analyze the string
stability of the continuum model (24) and make comparison with the discrete model (23) based on our previous work
in [59]. Physically, string stability means the attenuation (decay) of velocity fluctuations along a chain of vehicles,
which is directly related to the mitigation of congestion waves on highways. That is, string stability is essentially
the stability of solutions with respect to the vehicle index n. Note, however, that string stability has various different
mathematical definitions, see [57] for a summary about this topic. Here we consider linear input-to-output string
stability with respect to L2 norm and we aim to find the string stable domains in the space of the parameters τ and κ.

We restrict our discussion to linear stability and smooth solutions; shock solutions [65] (caused by Eulerian bound-
ary conditions) are out of scope of this work. Note that shock-like physical behavior on highways can still be captured
by the Lagrangian models, since they are able to reproduce large decelerations and accelerations for the vehicles
(whose trajectory is a smooth function), and they are also able to exhibit stop-and-go motion [3]. For more details
on well-posedness and smoothness of solutions, the reader is referred to [77, 78]. In what follows, we prove that the
stability boundaries of (24) converge to those of (23) as the orders MX , Mv are increased, and we show that properly
selected low order models already have realistic string stability properties.

Appendix A.1. String Stability Condition

In what follows, we analyze the string stability of the uniform flow v(n, t) ≡ v∗ of constant speed v∗. We consider
perturbations ṽ(n, t) around the uniform flow in the form v(n, t) = v∗ + ṽ(n, t) and we linearize the governing equations.
If the system is string stable, these perturbations decay upstream along a string of vehicles as n is decreased.

In particular, we assume harmonic velocity perturbations of angular frequency ω > 0 in the form

ṽ(n, t) = vampeiωte−λ(ω)n , (A.1)

where an exponential trial solution is assumed in terms of variable n for the linearized system. Note that general
velocity fluctuations can be decomposed into such harmonics. In (A.1) λ(ω) determines how velocity fluctuations
of a given angular frequency ω propagate along a string of vehicles. The real part of λ(ω) determines whether the
fluctuations amplify or decay: <(λ(ω)) < 0 must hold for all ω > 0 to guarantee the decay of velocity fluctuations
upstream (as n→ −∞). The imaginary part k = =(λ(ω)) is the wave number, which defines the angular frequency of
fluctuations with respect to the vehicle index n. Note that the sign of k also indicates the direction of wave propagation:
waves with k < 0 (k > 0) propagate upstream (downstream).

During string stability analysis we disregard wave numbers below −π and above π for the following reason.
When traffic models are evaluated physically, solutions are considered at integer vehicle indices only, which implies a
sampling with period 1 in terms of the variable n. According to the Nyquist-Shannon sampling theorem, phenomena of
period smaller than 2 (wave number larger than π) cannot be captured by sampling with period 1. Thus, we formulate
the condition for string stability as

<(λ(ω)) < 0 , ∀ω > 0 (A.2)

subject to =(λ(ω)) ∈ [−π, π].
For discrete models, the exclusion of wave numbers outside [−π, π] naturally happens. In such models, the ex-

pression T (iω) = exp(λ(ω)) appears instead of λ(ω), which is in fact the transfer function between the lead vehicle’s
velocity fluctuations ṽ(n + 1, t) and the follower vehicle’s velocity fluctuations ṽ(n, t) [36]. Accordingly, the string
stability condition (A.2) can be re-written as

|T (iω)| =
∣∣∣eλ(ω)

∣∣∣ < 1, ∀ω > 0 , (A.3)
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Figure A.13: (a) The spectrum of delay free models: the LWR model (14), PDE (13) of various orders and ODE (11) assuming κ = 0.6 s−1. (b)
The spectrum of time delay models: the delayed LWR model (25), PDDE (24) of various orders and DDE (23) assuming κ = 0.6 s−1, τ = 1 s.

that is, the vehicle pair as an input-output system shall not amplify velocity fluctuations.
Conditions (A.2) and (A.3) define the string stable domains in the space of the parameters such as τ and κ. If (A.2)

and (A.3) are algebraically too complex to evaluate, we may also search for the string stability boundaries rather than
the string stable parameter domains. At the stability boundary, velocity fluctuations neither amplify nor decay along
a string of vehicles, thus we can use the ansatz

ṽ(n, t) = vampeiωte−ikn , (A.4)

where k ∈ [−π, π]. Using this trial solution, stability boundaries can be constructed for various values of k and their
envelope — which can be depicted, but might be too difficult to calculate explicitly — defines the string stability limit.

In what follows we carry out the string stability analysis first for the discrete model (23), then for the continuum
model (24). As a result, we depict stability charts indicating the string stable domains in the (τ, κ) plane.

22



Appendix A.2. String Stability Analysis of the Delayed Discrete Model

In order to analyze string stability, we linearize (23) around the uniform flow v(n, t) ≡ v∗, X(n, t) = X(0, 0) + v∗t + nd∗

associated with uniform distance d∗ that satisfies V(d∗) = v∗. To accommodate our linear system to the string stability
conditions above, we first differentiate (23) with respect to time before linearization and write the linear system at the
velocity level. Assuming the nontrivial case dst < d∗ < dgo, we obtain

∂tṽ(n, t) = κ(ṽ(n + 1, t − τ) − ṽ(n, t − τ)) , (A.5)

where κ = V ′(d∗) > 0 is the slope of the range policy (12).
Substitution of (A.1) into (A.5) leads to the characteristic equation of the discrete model in the form

iωeiωτeλ(ω) = κ
(
1 − eλ(ω)

)
, (A.6)

which can be rearranged to
T (iω) = eλ(ω) =

κ

iωeiωτ + κ
. (A.7)

Then λ(ω) can be calculated and plotted in the complex plane as a curve parameterized by ω. This spectrum plot
is illustrated in the bottom right panel of Fig. A.13(a) for τ = 0 and Fig. A.13(b) for τ = 1 s, assuming κ = 0.6 s−1.
Recall that the system is string stable if the spectrum is located in the left half plane (see the τ = 0 case), and string
unstable otherwise (see the τ = 1 s case). Also note that the range of the vertical axis is =(λ(ω)) ∈ [−π, π].

Equations (A.3) and (A.7) imply the following string stability condition for the discrete model (23):

2κτ
sin(ωτ)
ωτ

− 1 < 0 , ∀ω > 0 . (A.8)

For τ = 0, the system is string stable for any κ. For τ > 0, the critical case ω→ 0+ gives the largest left-hand side
in (A.8), which implies the following string stability condition for the discrete model (23):

τ < τcr =
1
2κ
. (A.9)

The same result can also be obtained via substituting the ansatz (A.4) into the linearized discrete model (A.5).
This leads to the characteristic equation

iωeiωτ = κ
(
e−ik − 1

)
, (A.10)

which, after separation into real and imaginary parts, yields

−ω sin(ωτ) = κ(cos k − 1) ,
ω cos(ωτ) = −κ sin k .

(A.11)

By the help of dividing these two equations, we can express the parameters τ and κ as

τ =
1
ω

(
jπ −

k
2

)
,

κ =
ω(−1) j+1

2 sin
(

k
2

) , (A.12)

j ∈ Z. For each j, (A.12) defines a family of curves in the (τ, κ) plane where each value of k implies a different
curve parameterized by ω. The family of curves for j = 0 is illustrated in the top right panel of Fig A.14. Note that
j = 0 gives the smallest, critical delay. It can be shown that the envelope of these stability boundaries is exactly the
hyperbola given by (A.9), see the dashed line in the figure.
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Figure A.14: Stability charts of time delay models: the delayed LWR model (25), DDE (23) and PDDE (24) of various orders. The string stable
region (S) is shaded with gray, while the string unstable region (U) is white. Colorful thin lines show the stability boundaries given by (A.12)
and (A.20) for various wave numbers k. Black dashed line indicates the critical delay (A.9) of the discrete model (23) for reference.

Appendix A.3. String Stability Analysis of the Delayed Continuum Model
The linearized counterpart of the continuum model (24) reads

Mv∑
m=0

(−1)m

m!
∂m

n ∂tṽ(n, t) = −κ

MX∑
m=1

(−1)m

m!
∂m

n ṽ(n, t − τ) . (A.13)

Substitution of (A.1) into (A.13) yields the characteristic equation of the continuum model in the form

iωeiωτ
Mv∑

m=0

λ(ω)m

m!
= −κ

MX∑
m=1

λ(ω)m

m!
. (A.14)

Notice that (A.14) involves a polynomial of λ(ω), which can also be obtained from (A.6) via Taylor expansion of the
exponential terms.

String stability can be evaluated based on (A.2) provided that λ(ω) can be expressed from (A.14). This is possible
for low order PDDE models (small MX and Mv). For the delayed LWR model (25) (MX = 1, Mv = 0), we obtain

λ(ω) = −
iωeiωτ

κ
. (A.15)

The corresponding spectrum plot is shown by the top left panel of Figs. A.13(a,b) for τ = 0 and τ = 1 s, respectively.
The figure reveals that the delay free LWR model is at the boundary of string stability, since its spectrum is located
on the imaginary axis for any κ > 0. This explains why string (in)stability cannot be captured by the LWR model.
Meanwhile, the delayed LWR model is string unstable for any τ > 0 and κ > 0, because its spectrum is located in the
right half plane for small enough ω (i.e.,<(λ(ω))→ 0+ as ω→ 0+). The instability is also illustrated by the top left
panel of Fig. A.14, where a stability boundary τ = 0 (green) shows up in the stability chart. This justifies that the
higher order terms in Sec. 5.3 are required for the PDDE models to achieve realistic string stability properties.

The spectrum of model (33) with first order expansion (MX = Mv = 1) can also be calculated in closed form:

λ(ω) =
iωeiωτ

κ + iωeiωτ . (A.16)
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However, analytical results for spectra become too complicated or unavailable for higher MX and Mv orders. Still,
λ(ω) can be calculated numerically for each value of ω and can be plotted in the complex plane. This is shown by
the spectrum plots in Fig. A.13(a) for τ = 0 and Fig. A.13(b) for τ = 1 s. The different panels of the figure present the
spectrum of PDDEs of different order. Note that only the delayed LWR model has a spectrum that bends to the right
near the origin and exhibits string instability for any delay. For other, higher oder models string stability can also be
achieved if the delay is small enough.

Figure A.13 demonstrates that for both τ = 0 and τ > 0 the spectrum of the PDDE converges near the origin to that
of the DDE as the orders MX and Mv are increased. The behavior of the spectrum close to the imaginary axis (i.e., the
stability properties) are well captured even by low order models (for example MX = Mv = 3). Including more terms
(MX > 3 or Mv > 3) modifies the spectrum near the imaginary axis only for high imaginary parts (wave numbers),
which are less significant from practical point of view. Therefore, there is no need to add terms of order above
MX = Mv = 3, since they increase the complexity of the model. The selection of order MX = Mv = 2 or MX = Mv = 3
is sufficiently high for capturing string stability properties while keeping the model reasonably simple.

To calculate the string stability boundaries of higher order models, we use the ansatz (A.4) and substitute it into
the continuum model (A.13). This gives the characteristic equation

iωeiωτ(1 + Bv + iAv) = −κ(BX + iAX) , (A.17)

where the BX , Bv and AX , Av are the real and imaginary parts of the Taylor expansions of eik − 1 up to order MX , Mv:

BX =

bMX/2c∑
l=1

(−1)lk2l

(2l)!
, AX =

b(MX+1)/2c∑
l=1

(−1)l−1k2l−1

(2l − 1)!
, Bv =

bMv/2c∑
l=1

(−1)lk2l

(2l)!
, Av =

b(Mv+1)/2c∑
l=1

(−1)l−1k2l−1

(2l − 1)!
. (A.18)

Separation of (A.17) into real and imaginary parts yields

−ω sin(ωτ)(1 + Bv) − ω cos(ωτ)Av = −κBX ,

ω cos(ωτ)(1 + Bv) − ω sin(ωτ)Av = −κAX .
(A.19)

After rearranging these equations, the string stability boundaries become

τ =
1
ω

(
arctan

(
AvAX + BvBX + BX

AvBX − BvAX − AX

)
+ jπ

)
,

κ =
1

AX
(ω sin(ωτ)Av − ω cos(ωτ)(1 + Bv)) ,

(A.20)

j ∈ Z.
Equation (A.20) defines a family of curves in the (τ, κ) plane, which is shown in Fig A.14 for MX = Mv = 1, 2, 3

and j = 0. The envelope of these curves defines the string stable region and the value of the critical delay as a function
of κ. Note, however, that the envelope cannot be calculated in closed form for large MX and Mv due to the algebraic
complexity of (A.20). Still, the envelope can be visualized by the plot and the smallest (critical) delay is given by
the case j = 0. The figure also indicates that as the orders MX and Mv are increased, the envelope of the stability
boundaries of the PDDE converge to that of the DDE model (see the dashed line given by (A.9)). The convergence
is proven by noticing that BX , Bv → cos k − 1 and AX , Av → sin k as MX ,Mv → ∞, which reduces (A.20) to (A.12).
Although the convergence of the stability boundaries does not necessarily imply the convergence of solutions, Fig. 9
shows that low order models are already able to capture string (in)stability and produce realistic simulation results.
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